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I. Summary 
We are living in a world where automation is appearing in almost all aspects of our lives. We want to apply 

robotics into areas where robots can replace humans to do repetitive or risky tasks. One of which is 

storage management in a warehouse/industrial environment. For this Assignment, we decided to put 

together actuators, sensors, localisation and mapping, and computer vision in a robot that can move 

around on its own and manipulate objects automatically. We will achieve this by placing a Dobot, which 

is a 4-DOF robot arm, on a mobile base, and have it move real-world blocks, simulating what it's like to 

have such a robot in a warehouse. 

The task of the robot is to: 

• Find where it is within a maze 

• Go to a region in the maze to find a known object 

• Pick up the object and move it to a designated area 
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II. Mechanical and Electrical Design 
Mechanical Design (robot chassis) 
The robot is a Differential Drive robot, where the centre of mass (contributed the most by the Dobot) rests 

near the front wheels’ axis. This assures that the centre of rotation is at the wheels’ axis midpoint. There 

are 2 layers at the back, the lower one for the Li-Po batteries and the Dobot’s pump. The upper layer holds 

the rest of the components. 

Below is the assembly drawing of our robot. Made in SolidWorks. 

 

The components are: 

- Arduino Mega 2560 

- Raspberry Pi Model 3 B+ 

- Dobot Magician robot arm 

- 12V DC Motors (1:200 gear ratio) 

- Time of Flight sensor VL53L0X 

- Servo motor 

- H-Bridge Motor Driver L298N 

- Voltage Regulator 
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Electrical design (circuit board) 
Below is the block diagram of the whole system, showcasing how they are all connected 

 

For our Stobot wiring management, we discussed about the need of having a reliable electrical system (i.e. 

no breadboards and loose jumper wires). Therefore, we decided to design and solder our own circuit board 

that fits onto the top of the Arduino. The board took a lot of time to make. And we wished we had planned 

and simply ordered PCBs beforehand. However, the work paid off at the end, as we never have to worry 

about wiring ever again – everything is plug-and-play now. 
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Sensors 

 

Being aware of the requirement of not using a Lidar for this assignment. We decided to construct our own, 

by mounting a Time of Flight (TOF) distance sensor on top of a servo motor and have it rotated around 

while the TOF records distances. A stepper motor would work better in this case (smaller angle increments), 

however we would need to find a way to “home” or find the current position of the stepper. We saved 

ourselves the trouble and went with the first idea instead. 

Our servo rotates continuously from 0 to 180 degree and then back to 0 degrees, increasing 5 degrees each 

time. We tested with different kind of distance sensors, not just the TOF, including the IR from the second 

assignment. We chose to use the TOF because of its accuracy in short ranges (10-1000 mm) 

The TOF sensor that we used was the GY-VL53L0XV2 Time-of-Flight Distance Sensor. According to the 

datasheet, different coloured objects affect the measurements differently. The colour of the walls of our 

Mx2 Maze is bright (very reflective), so it helped with sensing.  

However, one major problem is the maximum range of the TOF sensor, which is 1.2m, much shorter than 

the maze’s dimensions (up to 5m). Thus, in some conditions when the TOF sensor was pointed at a large 

empty area, it can’t measure anything and automatically returns a value of 8191 – the out of range value. 

Actuators 
We used 12V geared DC Motors with the gear ratio of 1:200 and the no-load speed at 12V of 30 RPM. The 

reason why we chose such slow motors was to increase accuracy in the movement of the robot; as well as 

providing constant torque as the weight of the robot is very heavy (~6kg). 

The motors also came with Encoders, which helped us implement PID-control. At maximum speed, the 

rotation and step count of the Encoders are too fast for a normal I/O port of the Arduino to process. Hence, 

we had to connect the Encoders’ pins to the pins which allowed external interrupts. Luckily, the Arduino 

Mega provided us enough interrupt-enabled pins to achieve this. 
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III. Integration (ROS Network) 
Using all these different components, we had to setup a network to precisely gain control of the whole 

robot as one unit. We then setup a ROS network between all the components of the robot. The network 

looked something somewhat like the diagram below 

 

Master (Raspberry Pi): The raspberry pi serves as the master for the ros network and all the nodes 

register to it in order to be listed on the ros network. The nodes communicate with the master to register 

subscribers, publishers and services. Once the nodes are registers on the network, they can now 

communicate with one another by sending and receiving data through topics and services. 

Node 1 (Arduino Mega): The embedded system microcontroller, Arduino Mega is used in this project 

mainly for the control of the motors of the chassis and the servo, tof sensor combination serving as low 

budget lidar for the Monte Carlo Localisation. The mega is registered on to the ros network via 

rosserial_arduino to the master. The rosserial_arduino creates a serial communication between the 

Arduino mega and the raspberry pi and enables data to be shared via topics and services. 

The data shared was between Node 1 and Node 2, the localisation performed on Node 2 sends the pose to 

a service which the Node 1 calls to and then reacts. Also, the lidar information published as a rostopic by 

the Arduino Mega and subscribed to by the Node 2. 
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Node 2 (Matlab running on a PC): This node connects to the master by addressing it by its IP address 

i.e. the IP address of the Raspberry Pi, the master. This node is the only node that shares data between 

itself and the other two nodes in the network. 

Node 2 communicates with Node 1, sending out destination pose as a services and runs a subscriber that 

subscribes to a topic published by Node 1 containing the lidar information (servo angle, proximity 

reading) as the Node 2 performs the Monte Carlo Localization. 

Node 2 also communicates with Node 3, sends out destination pose for the Dobot Magician to move to. 

This pose is obtained by the Computer Vision implemented using Matlab to detect the object and 

approximate the pose of the object. 

 

Node 3 (Dobot Magician): Node 2 connects the ros network via a UART connection to the master, 

communicating with the master in order to call services. This node communicates with Node 2, receiving 

pose data for designated position of the end effector through a service. 
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IV. Position Control 
Now that we had all the hardware stuff out of the way. We got straight into implementing software. Starting 

with having a coordinates-based control system where you can input a 2D Pose value (x, y, theta) in the 

maze the robot would go there accordingly. 

 

The robot does this by storing its current position within the world frame. Then when it receives a 

destination point, it calculates the 3 moves to get there: one pure rotation, one straight path and one final 

rotation to reach the final Pose of x, y and theta. Once it has calculated the 2 angles of rotation and 1 distance 

of linear movement, it will translate these values into Encoder value setpoints, relative to the current 

Encoder values of each motor. Finally, it will try to reach these setpoints using a PID-Controller, with 

parameters tuned to overcome the motors’ natural damping characteristics (caused mainly by friction). The 

PID Controller also accounts for the error between the 2 wheels and corrects it by making the faster wheel 

slower through PWM; this ensures that the robot moves in a straight line when it is supposed to. 

 

Once it has reached the target point, it will update its current position as the destination position, for future 

moves calculations. 

The programming structure is that each motor exists as a class, which has properties as current encoder 

value, setpoint and PID tuning parameters. Then there’s a robot class that includes 2 of these motor 

“objects”. This robot class would have properties such as current position, destination position and state 

(moving/stationary/calculating moves). And in order to make the flow of the program smooth and 

nonintrusive, we have written it such that the movement of the robot can run simultaneously with other 

parts of the codes (like the ones to turn the servo motor and gets distance measurements). 
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V. Localisation using Monte Carlo Localisation (MCL) 
Although we know that our robot will start in around a certain area within the maze, we never know exactly 

where that is, and more importantly, the initial orientation of the robot. This is very crucial as the maze has 

long and narrow corridors, which if the robot enters with the wrong orientation or position, will crash into 

walls once it’s in there. 

Therefore, we need a way to determine accurately the robot’s current position, then updates it every time 

the robot makes a move. One of the tutors of the subject suggested us the use of the Monte Carlo 

Localisation (MCL) Technique, which is a Particle Filter algorithm, used widely in robotics, especially 

probabilistic robotics. 

MCL first generates all the possible poses of the robots, which at the start is all over the map. Then as the 

robot moves and measure distances to the environment that surrounds it, these points, or particles, are 

weighted based on their likelihood of being the correct pose. Then the particles are resampled, which means 

they are redistributed based on their weights. The process repeats until the points converge into a small 

enough area that we are confident that the robot is there. This “confidence” is called the covariance in the 

algorithm. 
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MCL takes 2 inputs: the robot’s pose relative to the starting position (where it thinks it is) and a lidar 

measurement. We already have the pose from the Control section. What we needed was to turn our TOF 

readings into a lidar measurement. We were doing everything on MATLAB, so using MCL was straight 

forward. The most important aspect was to get the correct parameters, namely: the sensor’s accuracy, the 

robot motion model and the way we resample and distribute particles. 

To get the first initial values, we drove the robots around manually, then waited for it to take sensor readings, 

and repeated until the robot found its position. Once that was complete, the robot would move around the 

maze autonomously, through a pre-determined set of poses. 

We faced many problems trying to get MCL to work, most of the problems arose from the fact that we did 

not have enough experience with how particle filters work, and what the parameters meant. But once we 

had known our ways around MCL, a real challenge presented: Our distance sensor’s range was too limited, 

and the maze was too big. This made it hard for the algorithm to work with the default maze layout. 

We fixed this by introducing our own layout, with more walls closer to the path of the robot, and adding 

more obstacles as well 

 

The default layout is the one on the left and ours is on the right. 

At the end, after a sleepless night of 2 of our members, MCL was working and robot moved autonomously. 

  



11 
 

VI. Computer Vision and Machine Learning 
For the second main part of our project, pick up an object and bring it to particular location within the 

map, we decided to used computer vision and separated the task into four small sections: 

- Detect object and move toward it 

- Perform the object’s pose estimation with respect to the camera’s coordinate frame 

- Perform a transformation between the camera frame and the Dobot’s frame to find the pose of 

the object with respect to the Dobot’s frame 

- Have the Dobot pick it up and move back to the initial position. 

Based on the above sections, the two main sections that play the most important role in the whole 

computer vision part. They are: 

• OBJECT DETECTION 

• POSE ESTIMATION 

OBJECT DETECTION 
For object detection, there are multiple approach to this problem as it is a popular AI and robotics problem 

nowadays, and can be implemented by two main methods: using traditional Computer Vision – feature 

detectors, or deep learning – train an AI to detect a given object in a picture.  

At the beginning, the method chosen was the traditional approach. There are also multiple methods for 

this scenario. One of them is using a Support Vector Machine Classifier (SVM) alongside with the features 

extraction algorithm Histogram of Oriented Gradients for object detection. Based on the benefits that this 

method brings, we have decided to use it.  

1. SVM Classifier with HOG 
The SVM approach was quite successful at the beginning, as the algorithm was able to detect the object 

from an image with a white background. However, it started to fail when the given image contains objects 

or scene that had a similar shape to the object (which contained straight lines or black dots). An example 

of the case where the classifier failed is given below. The metal rig had straight lines and black dots that 

forms the shape of a box. Because of that, the algorithm produced a high probability that the rig was the 

object that we were looking for. 
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As the task is to locate the object, pick it up and bring it to a location, the first and also most important 

part – object detection – must be precise enough for us. We also tried increasing the number of the images 

in the dataset (originally 500 to 5000), but the results did not change much. There are two main reasons 

that were accounted for this: 

- The Histogram of Oriented Gradients is an algorithm used to extract the general features and 

overall shapes of an object, as the working principle of the algorithm relied on edges (gradients). 

Therefore, it would perform better if the given object has a bigger shape within the image and 

more distinct features (like vehicles, human faces). Our object was very simple and did not contain 

any special or distinct features, which made the data produced by the HOG algorithm unreliable.  

- The SVM used the data produced from the HOG features, and as discussed above, the data was 

not reliable enough to use. Therefore, the algorithm did not perform well even with more given 

data.  

2. Deep Learning  
After some consideration, we have decided to use the second method – deep learning. A model was 

trained to find the object in the an image, and this model was created based on the structure of LeNet5, 

with some adjustment in the filter sizes and number of neurons in the fully connected layers, as LeNet 

uses a 32 x 32 image while our image was 128 x 128. 

 

The deep learning method was much more straightforward than the traditional one. Basically we only 

needed to create more training dataset for the model as it would not be able to perform well with little 

amount of data. The picture below shows the differences in the implementation of the two methods. 
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The final number of images used for the training procedure of the model was 30,000. 10% of that number, 

which is 3000 images, were used for the cross-validation dataset.  

 

The model took about 3 hours to train, with the final training error of 99.9 % and the cross-validation error 

of about 99.6%. We used the Adam optimizer (regularization included to avoid overfitting) method with 

the 30 epochs and a learning rate of 0.001. The outcome was quite satisfactory with the model now was 

able to detect the object in the cases where the SVM could not. 
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3. Discussion about the methods 
The table below shows the comparison between the two Computer Vision methods for this particular 

project. 

 SVM + HOG Deep Learning 

Advantages • Training takes less time 
than deep learning 

• Can be combined with 
other features 
extractions 

• Has high precision and 
accuracy 

• Produce the result 
instantly as it does not 
required any other 
features extraction 
algorithm in order to 
work. 

Disadvantages • Does not have high 
accuracy enough for this 
particular project 

• Results take longer time 
to be produced as it 
needs to go through a 
feature extraction 
algorithm first before 
the classifier. 

 

• Training takes a lot of 
time 

 

 

The main reason for the better performance of the deep learning model was that it extracted the features 

directly from the image by applying filters through it multiple time. By doing so, some of the key features 

of the object such as the black corners were kept and used for comparison. Therefore, it was able to 

distinguish between the object that it needs to find and other objects in the image.  

The object chosen was designed with white body and black corner intentionally. As the task was to use to 

Dobot to pick it up, the object was expected to have features that can be easily extracted just by using a 

feature extractor or two, as we do not have good and enough knowledge about computer vision and 

features extraction to perform such tasks. That is why the object has a very simple design, so that the 

black corners can be detected easily. However, because of the simple look of the object, it makes the 

detection task difficult as there is no distinct or special features about the object. It requires a much more 

powerful method in order to get the task done, but the method of deep learning is feasible enough for us 

to implement as there are a lot of instructions and tutorials online. In conclusion, for this particular, it is a 

trade-off scenario between the features extraction problem and object detection, as object with multiple 

features will make the detection part easier but will also create more difficult tasks for the features 

extraction, while on the other hand, a much more simple object with less features will make the object 

detection more difficult but the features extraction will be much more straight forward.  

Our group chose the second approach as the features extraction is harder to be implemented than the 

object detection. This topic will be further supported in the pose estimation section. 
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POSE ESTIMATION 
For pose estimation, it is required to know at least six distinct features from the object. The reason is in 

order to represent an object in 3D, we need 6 axes, which are 3 for translations and 3 for rotations. 

Furthermore, it is also crucial to know the exact position between each individual feature in the object 

coordinate frame.  

Due to the above reasons, the object should contain simple features that can be easily detected using one 

or two features extractor algorithm. If the object is too complicated, then by using the features extractor, 

it would be very hard to get the distinct features of the object. Even if the features are detected, it is 

impossible to tell the distance between those features in the object coordinate frame. This is the trade-

off problem that was mentioned in the object detection section above. It is required to sacrifice the 

feasibility in the object detection part to get a much more implementable pose estimation part. 

1. Method 
The method of the pose estimation can be described using the following flow chart: 

 

 

By comparing the projection of the object pose from 3D to 2D with the features extracted from the image 

and minimizing the error, we will be able to obtain the pose of the object eventually. 
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One of the must crucial part of the pose estimation was to calibrate the camera properly and get the 

camera matrices. From the camera matrices obtained from the calibration, the 3D to 2D projection, which 

requires that matrix, was able to be performed. 

 

The image shows the final result of the pose estimation algorithm, where the red dots that represents the 

estimated pose of the object in 3D align with the black corners on the object. From the given pose, an 

illustration of the coordinate frame is drawn to show the frame of the object. 

2. Discussion about the method and result obtained 
The final result from the pose estimation algorithm was not as precise as expected. For the horizontal and 

vertical element, which stand for the x and y axis of the camera frame, respectively, the result was 

accurate and ready to be used with the Dobot cartesian control. However, the essential factor, the depth 

element, was not so reliable.  

Luckily, we found that the inaccuracy was just an offset that was proportional to the value of depth 

obtained from the algorithm. From the data collected using the algorithm with real measurement, the 

best fit line was constructed that described successfully the offset in relation to the depth value. 

Another issue was the orientation of the object. As the depth value of the estimated pose was not correct, 

it affected the orientation of the object with respect to the y axis of the camera as well (the value that we 

care the most). Therefore, to account for that inaccuracy, we decided to change from the gripper to the 

suction cup. The suction cup did not require the full pose of the object, unlike the gripper. With the suction 

cup, we were able to expand the surface area of the object to increase the chance for it to be captured by 

the Dobot.  

3. What we would have done differently 
There are many options for us to try in future projects. They are listed below: 
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• Stereo Vision 

• RGB-D Camera 

• Eye-on-hand robot configuration 

For Stereo Vision, it will allow us to have a better pose estimation result, as the fused signal of the 2 

cameras gives us 3D point cloud. The drawback of this method is that it is quite difficult to be implemented 

in such short amount of time. 

For RGB-D camera, it is the same as Stereo Vision, but more robust and reliable. It will also allow to use 

the data from the camera to perform and get better localization result. 

For Eye on hand, it will give us a better control over the Dobot arm rather than relying on the stationary 

camera at the front of the robot. However, it will be much more difficult to get a precise value of the 

camera pose with respect to the Dobot frame, as the camera moves with the end effector. 

FLOWCHART FOR ALL SECTIONS IN THE COMPUTER VISION PART 
Main Programing flow 
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Object Detection 

  



19 
 

Robot Alignment 
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Feature Extraction 
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Dobot Grabbing 

 

 

Check if the object has been grabbed 
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VII. Appendix 
A. Source codes 

http://tiny.cc/StobotSource 

B. Link to video 
http://tiny.cc/StobotVideo 

C. Member contribution 

Group Member Contribution Task 

Dinh Tung Le 30% 

- Electrical Design 

- Position Control 

- Localisation 

Dac Dang Khoa Nguyen 30% 

- Mechanical Design 

- Computer Vision 

- Dobot Control 

Victor Olumide Fajemirokun 15% 

- ROS Network 

- Arduino – Pi integration 

Nguyen Thanh Trung Le 15% 

- Sensors and Encoders 

- Components testing 

Thanh Tung Vu 10% 

- Helping with researching on 

Localisation 

- Helping with building the robot 

 

http://tiny.cc/StobotSource
http://tiny.cc/StobotVideo

